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Abstract

The weighted rational approximation of functions with inner singularities of algebraic type
in [—1, 1] is investigated. New direct and converse results not achievable by polynomials, are
proved.
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1. Introduction

Recently in [7] the author studied the weighted uniform approximation of
functions with algebraic singularities at the endpoints in [—1,1] by rational
interpolatory operators and direct and converse results not achievable by
polynomials, were proved.
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The behaviour of the weighted approximation of functions with inner singularities
by such rational operators was an open problem. Indeed, inner singularities add new
difficulties and the behaviour of the approximation requires a more careful
examination than in the case of endpoints singularities (cf. [12]). Recently in
[4,12,13] the authors obtained error estimates for the best weighted polynomial
approximation of functions with inner singularities of algebraic type in terms of a

suitable weighted modulus of smoothness w?(f’7);,, with ¢(x) = V1 — x2.

The purpose of this paper is to construct rational operators for the weighted
approximation of functions with inner singularities in [—1, 1]. Such operators are
positive, interpolatory and easy to construct. First we show that for such operators
the weighted convergence with exponential type weights is not guaranteed in general
(see Proposition 1). Therefore here we consider weights vanishing algebraically at
any inner point and functions belonging to the class C,, defined in (2). For such
functions we give convergence theorems and uniform approximation error estimates
(see Theorem 2). We also establish the first pointwise approximation error estimate
and the first converse results for functions from C, (see Theorems 2 and 4). Our
results involve a new weighted modulus of smoothness w?(f),, (see (7)) and an
equivalent weighted K-functional K?(f), (see Lemma 8) with ¢(x) vanishing
algebraically at any inner point. This modulus is new, in a certain sense, because
classical weighted moduli of smoothness involve functions having zeros at the
endpoints of the approximation interval (cf. [11-13]). This peculiarity agrees with the
different behaviour of polynomial and rational approximation. Useful tools for our
results are some new weighted Markov—Bernstein type inequalities for our operator
(see Lemmas 6 and 7) and the equivalence relation between our weighted modulus of
smoothness and the corresponding weighted K-functional (see Lemma 8). Finally we
prove that our estimates cannot be reached by polynomials (see Remarks to
Theorem 2).

2. Main results
Letting
wix) = [x— ', x>0, ld<1, |x[<I, (1)

we introduce the following class of functions
C, = {fe C([-1,1] = {c}), st. ‘lim+(wf)(x) = O}. (2)

Without loss of generality, we may assume ¢ = 0 in (1), i.e., we consider functions
having an inner singularity of algebraic type at 0. The case of several inner
singularities can be similarly treated. For fe C, put ||wf]|| = sup |(wf)(x)| and

[x|<1
W/ sy = sup [(wf)(x)]-

x€la,b]
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For odd n, construct the following mesh of nodes

K\* n—1
—(1-2- =
( n> b k 0) b 2 )

B
(2’5—1), ="t
n 2

with =1 (cf. [8]). Note that this mesh is finer near +1/n”, (8> 1). Then consider the
Shepard-type operator

(3)

Xken = Xig =

|x x|

S S (xx) = 4
n(f’ Z Z 0|X X,| ( )
with |x|<1, feC, and s>2. From the definition it follows that the operator S, is
positive, preserves constants, and interpolates to f at xi, (k =0, ..., n), in the sense

that limy_,y, S, (f;x) =f(xx) (cf. [1]). In the last decades the operator S, and its
multivariate extensions have been the subject of several papers, because of their
interesting properties in classical approximation theory and other fields, as
multivariate interpolation on scattered data, CAGD, fluid-dynamics (see, for
example, [1-3,6,8-10,14-16]). Algorithms for parallel, multistage and recursive
computation of S, can be found in [1].

Here we first show that we have to consider weights of type (1) for the weighted
approximation of f € C,, by S, since for exponential type weights the convergence is
not guaranteed in general. Indeed we have

Proposition 1. Let W (x) = exp(—1/|x|) and f(x) = exp(1/+/|x]). Then
lim sup,,|| WS, ()| = + .

In the present paper we want to show that the operator defined by (3) and (4) is a
good tool for the weighted uniform approximation of functions from C,,. In order to
define the new modulus of smoothness we follow [4,12,13]. We consider the
following main part of a weighted modulus of smoothness Q?(f),, defined by

0°(fi0), = sup o) (v #75%) s (x4 4252 ) i, (5

0<h<t
where ¢ is small (say 1<to), Iy = [—1+h/2,—h*]U [P, 1 —h/2] and @(x)=
|x|(ﬁ_1)/ﬁ (cf. [12] or [13], where ¢(x) = V1 — x2). If in (5) we put f =1, i.e. p(x) =
1, then

Ql(f;1), =Q(f;0),
h h
= sup (ol (x=5) ~f (x4 5) oo ©

0<h<t

is the main part of a weighted modulus of continuity.



B. Della Vecchia | Journal of Approximation Theory 126 (2004) 16-35 19

In the following C will always denote a positive constant which, however, may
assume different values in different occurrences. Moreover we write a~b, if

la/b|*' < C. Then we define the new weighted modulus of smoothness w®(f; 1),
as

@?(f:2), = Q%(f31),, + inf [[wlf —alll,, (7)

with J; = [—##, t#]. For a discussion on definition (7) the reader can refer [4] or [5] or
[12]. It is possible to prove that

lim w?(f;1),, =0
t—0*
and
o?(f;u), <Clu+ Dw?(f;1),, Yu>0, (8)

with C>0 depending only on w.
Then we state the following direct and converse results.

Theorem 2. Let feC, and let S, be the operator defined by (3) and (4). If s=of +
B+ 1, then

1

Il = syl < cor (£i7) )

where C>0 is a constant independent of f and n. Moreover, if aff =1, then
1 wf 1 , wf

o (fi) + Lty = .00+ oyl + 2 (10)

Wl = Su(Dll = O(n™") = w?(f31),, = O(°), 0<o<l, (11)
and

lwoS! ()| < Cn " = w?(f; 1), = 0O(t°), 0<o<l. (12)

From (9) we deduce the weighted uniform convergence of S,(f) to f, Vf eC, and
Vs=aff + f + 1. Our results are strongly influenced by the mesh distribution (see the
function ¢ on the right-hand side in (9)—(12)).

We remark that estimate (9) cannot be obtained by polynomials. Indeed we have
the following

Proposition 3. For any f € C,, and every n there not exist an algebraic polynomial of
degree at most n s.t.

W)~ pul < Cor (£i7) vl (13)

w
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From (10) by (9) we deduce (see (42))

[lwoS, (Nl <C[nw<ﬂ (f; %) +M} 7

which is the analogous of [11, formula (7.3.1), p. 84] for the best approximation
polynomial. From (10), by Lemma 8, it follows that

. . 1 w
i {1ty =1+l 4+ 0

[wh' p]| < o0
A1tk [wf ]l
I = Sa OIS, (O + = =

(14)

in other words the infimum on the right-hand side in (14) is essentially realized by
Su(f). Moreover (9) cannot be improved because of (11). In a sense, equivalence
relation (11) characterizes the class of functions from C,, having a given behaviour
near 0 by the order of weighted approximation by operator S,. Equivalence (12) is
the analogous of the result in [11, Corollary 7.3, p. 86] for the best approximation
polynomial.

We remark that (11)—(12) are the first converse results for functions from C,,.

We can also get a new pointwise approximation error estimate. Indeed as above
construct the following mesh for odd »

B 1-8 _

Y (1) ko5t
Vi = n n n 2 (15)
_n+1

IR

—Vn—k;, k -, N,
with f>1. Note that this mesh is finer near i%. Then denote by S, the operator S,

based on the new mesh (15). Moreover put ¢/(y) = sup w(x)|f(x)|, measuring the
0<|x|<y

decay of |(wf)(y)| to 0, when |y|—>0" (cf. [9]).

Theorem 4. Let s>max{aff+ 1,1+ /(f—1)}. Then

& () + e () + e (1), if x <o,
o(x 2 .
0(f;%2) +E, i [x|> 70,

w)[f (x) = Su(f5x)[<C (16)

where C is a positive constant independent of [ and n, Q(f; 1),
Cn=0,(0<d<1), and o(x) = |x|<ﬁ71>/ﬁ

., is as in (6), p, =

We observe that (16) is the first pointwise error estimate for functions from C,,.
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3. Proofs of main results

Proof of Proposition 1. Put x = (x, + x,,_1)/2. Then

X) = exp(—1/x)3_o|x — xx| “exp(1/+/Txi)
ZZ:OPC — x|

exp(l/\/ X[n/2] ) n/2

> Zk 0|xka|

exp(Cnb/?

cxe(C?)
> = x|
k=0

W (x)Su(f;

Since

ZZZO |x — x| < Cr',
from (17) it follows that

B/2
W08,/ > PO

which is unbounded when n— 0.

21

The proof of Theorem 2 is based on some preliminaries that are interesting in
themselves since they establish the weighted boundedness of the operator S, (Lemma
5), some new weighted Markov—Bernstein inequalities for S, (Lemmas 6 and 7) and
the equivalence relation between the weighted modulus of smoothness and the

corresponding weighted K-functional (Lemma 8).

Lemma 5. Let s=af + 1. Then for every function f defined on [—1,1] —

WS, (O < ClIwrll,

where C is a positive constant independent of f and n.

Note that Lemma 5 does not use the assumption lim,_,¢(wf)(x) = 0.

Lemma 6. If s>off + 1, then
[IwoS, (H)II< Callwrl,

where C is independent of f and n.

{0} we have

The proofs of Lemmas 5 and 6 are similar to the proofs of Lemmas 3.1 and 3.2 in

[9] (see also [7]) so we may omit them.
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Lemma 7. If s=aff + 1 and afp =1, then

WS, (NII< C{llwes/ "l + [Iwf1]}, if [wes’|l<C,
where C is independent of f and n.

Proof. Since
Sulf5) =F () + > Ak(x)[f (i) = f (%),

|x — x| ™"

Dimolx = xi ™

with A4 (x) = it follows that

SL(Fx) = 3 A0l (k) — £ ()]
k=0

Let x>0 (the case x<0 is similar). If x; >0, then

[(wo)( Z Ay (x — (x| < ] (we)( Z A (x / f(¢ (18)
x>0 x>0
and working as usual (cf. [6,9])
[0v) (x)]| D Al — (]| < Cllwer"|l- (19)
x>0
Let x;x<0. Then
> A (x) - <D A(x (x[n/2]+l)]'
xk<0 Xk <0
D A [ (puy2) +f (K2 +1)]‘
Xk <0
Z A/ 11/2 f(xk)] ’
xk<0
=2 + Xy + X3. (20)

Now X, and X5 can be estimated as in (18). Hence it remains to estimate X,. Now if
0 <Xx< X241, then we prove that for aff>1

[EEIVACHEIDIES {IIWfII + llwer"l[}- (1)
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(- row

Xin/2]+1

Indeed

x)’f<x[n/2]+l)‘ < w(x)

1 1
< C||wf\|w+ Cllwef"||w(x )[CJF y/f+l}

Coi .
< —{Ihwf 11+ [[werf |1,

1.e., (21) holds true. Moreover, working as usual (see, e.g., [6,9])

)| A (x)|<Cn (22)
X <0
Hence by (21) and (22) if 0 <x< x,/241 and af>1
Lo <Alwf 1+ lwer ||} (23)

If x> X[;/2)+1, then let x; denote the closest knot to x. Then by (21) working as usual
(see, e.g., [6,9])

< C%W( m/2e) | (K1) | (x) ZoAk
C
< AU+ [wf olI}(2/ = n) Po(x)] Y AL(x)
X <0
/ (2]._”)6{/))
< C{Iwf| + [Iwf <P||}—(],_n/2+1)5-4

< C{Uwr 1]+ s el[}, (24)
if szaf + 1.
Finally by (19), (20), (23) and (24), the assertion follows. [

Now we introduce the weighted K-functional

Ke(f0),, = inf  {[|wlf = glll + tlweg'|[} (25)

[[weg'|| < oo

We have the following

Lemma 8. Let f'€C, and let o?(f;t),, and K?(f;t),, be as in (7) and (25), respectively.
If af =1, then the following equivalence

w?(f;1), + ||Wf||<C{K‘P(f,) |M:{H}<C{w‘”(f;t)w+”v;f”}, (26)

holds for 0 <t<ty, where ty and the constants in (26) are independent of f and n.
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Proof. We follow [4,5,11]. Let >0, M = min{keN : k>¢"'} and t, = xp 0111,k =
0, ..., M + 1, with xy pr41 defined by (3). With 74 = (# + tx41)/2 we define y, (x) =
W ((x — w%)/Atk), where e C*(R) is a non-decreasing function such that

b(x) = 1, if x=1,
Y70, if x<0.

Recalling the definition of the Steklov function [11]

= /lf(x—i— tu) du
0

where —1<t<1, we introduce the following functions

&szz St () dr

and
ZFrk i1 () (1 = Y (x)),

with ¥, (x) = 1 and ¥,;,(x) = 0. Denoting by I, the interval [—1,—#]U[¢# 1] and
proceeding as in [11, pp. 14-16] (cf. also [5] or [4]), it results

wlf = Gilll, < CQ°(f; 1), (27)
and

fwoGill, <CQ°(f11),, (28)
with Q°(f),, given by (5). Now let J, = [-##, ##] and let PyeR such that

Iwlf = Pully <2 inf [wlf — all. 9)

We consider the following function
I, = Gt(l — le) + Po‘“Pz(l — lP4) + G,\Vy, (30)
where Wi(x) = y((x — z))/Az), i=2,4, 2o = —(20), z3 = —tf, z4 = i#, z5 = (21)"

and AZ,’ = Zit1 — Zj.
Our aim is to prove that

Ke(f50), <|wlf = Tl + ] [Tiow|| < Co®(f5 1),,. (31)
Since
Gy, in [—1,z]ulzs, 1],
r,— Py, in [z3,z4),

Gt(l —\Pz) + Py¥,, in Z = [22723],
Po(l — \P4) + G¥4, in 7= [24,25}
and /' =f(1 —¥;) + /¥, i = 2,4, we have

bwlf =Tl < C{iwlr = Gl + wlf = Polll, }- (32)
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Hence by (27), (30) and (32)
Iwer = Tall<c{@rn, + int Il all, p<Cor(gio,.

Now we estimate [|[woI')||. From (30) it follows that

woTilI<[woGill;, + [wol il 7
Assume xe Z (the case xeZ is similar). Then

T ()< [W5(x)(Gr = Po)(x)] + [¥2(x) Gi(x))|

< CAz'(Gr = Po)(x)| + | Gy(x))-

Hence

wol'jl|z < CAzy ' @(x)|Iw[G, — Polll + |lwe Gyl
Since Az; ~ tp(x), we obtain

t|wolfllz < C{IIwG, — Polll + llweGlll £ }

< C{IwlG = flllz + [Iwlf = Polllz + t]weGl| £ }-

Thus by (34), (35), (27), (28) and (29)

Aot c{ae(si, + int Inlf ~ dl, .

25

(35)

(36)

Finally (33) and (36) imply (31) and hence the right hand inequality in (26). Now we
prove the converse inequality. Working as in [5, Proof of Proposition 2.1, Step 3] (see

also [4]) we have
Q7 (f 1), <C{Iwlf — gllll + tllwogill},
where g, AC((—1, 1)) is chosen such that
W = g0l + tllwegi| | <2K*(f3 1),
Moreover
inf |[wlf — alll, < [bvlf gl + inf [lwlo. —all,
< Wl = agdlly, + lwaill,-
Now if xeJ;, x#0, then working as in (21), afi>1,
w(x)|g:(x)] < Ce{lwgyl| + |lweg)l]}.
Hence from (40) and (39)
inf [[wlf — alll, < CUML — gl + dwog] [} + llwr].
Therefore by (7), (37), (38) and (41)
o?(f50),, <CLKO(f50),, + tlwf 1},
which proves the left-hand inequality in (26). [

(37)

(38)
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Remark 9. From Lemmas 6, 7 and 8 we obtain that VfeC, and VheC, s.t.
|lwoh'|| < oo

WS, (NII< [IweS, (f = W)l + [lweS, (W]

< Cullwlf = Al + Cllwel|| + Cl|wh]|

< Cnow? (f; %) ,+C||Wf||' (42)

Proof of Theorem 2. Because of the interpolatory behaviour of S, we can assume

x#xi, k=0, ..., n. Let x>0 (the case x<0 is similar). We distinguish two cases.
Case 1: 0 <X <X[p241-
Then

()1 () = S, >|<W(x){2xk>o+2xk<o}lxXk“V<x> /(%)
w(Xx X nJi X)X El;:o|x_x[‘_s

—A+B. (43)

Now
A< w(x)|f(x) _f(x[n/2]+l)}
N W)Yyt X = X7 Cenyag1) = (k)|

Diolx = x|
=A| + A4>. (44)
From (44) it follows that
Ar<2 inf [l = allly s 1 ) (45)

On the other hand if x> xj, /511 by (8)

WS (¥puap) —f ()| =

w(x)
w{ (xpu2yer + 1) /2

|f (xpya1) =S ()|

) W((x[n/2]+l + xk)/z)

X[y + X
< Cw(%) |f (Xpnya1) = f (x|
| X211 — X
< CQ?| f;
(f o ((xpae +x)/2) )|

n|xe — X1 | 1
<c(1 o (fim) . (6
< ( * (P((x[n/2]+l + xk)/2)> (f I’l> w ( )
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Since ¢ ((Xpu/241 + Xk)/2) > Cp(xpya+1) and |xx — Xpyjo41| <|x — xk|, by (44) and

(46) we obtain

—s+1
1) Zxk>x[n/2]+1 ‘X - xk‘ ’ n
w

A, < CQY ( fi= ; = :
n Zi1:0|x - xi| : (P(x[n/Z]Jrl)

Since (see, e.g., [8])
(%)

e =il > CEZk — jl, k),

and

1

=——=<|x—x°
Yool — x| a
with x; the closest knot to x, it follows that

n

1 s -
A, < CQP (f,;) |X X[n/2] +1| Z |Xk ”/2]+1|

w

k=
1 n/2 -H /2]
< CQ° < f; n) Z
w k=

1
< CQY ( f;—) .
nj.,

Hence from (44), (45) and (50)

A<Cw“’(f;%> .
w

Now we estimate B. Indeed

s+1 n

nS

X241 ) k0!

()| () =1 (¥ |
Zxk<x[n/2] f(xk) _f(x[n/Z])“x — Xk -
+ w(x) ST =
=B + B».

Working as in the estimate of (45)

Bi<2 inf [wlf = all[_1 s 1un)-

[n/2]+2 @ (Xpn2141)

(49)

(52)
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On the other hand working as in (46)—(50)

1 Zx Xip/2 |xk — X[p/2 ‘ n/(p 5
B, < CQ° (f, n> k< Xun/2] _ [n/2] (X))
W Z |X _ xi|<\'

i=0

< CQ“’( > |X — X[n/2) +1} ZXA<¥,,/2 X )|xn/2] i —s+1

< CQ° (f;i) .

Finally from (43), (51)—(54)
W(X)lf(x) - Sn(f; X)| < Cw? (f’ %) v'

Case 2: Xjpya41 <X.
Since (see, e.g., [8])

X
: n
with x; the closest knot to x, then

wOIf (x) — £(3)] < CQP (fl) |

w

Now we estimate

Dl (%) =S (i)l — x|~

2 =w(x)

Dol = x|
{Zx, >0 2 <o () = f (i) llx — x| ™
=) il = xil ™
=T+ T>.

First we estimate 7;. Working as above, by x; >0,

w(x)

w()lf (x) =/ (xx) | <

<er(rs,), (" 1)

Hence by (48), (49) and (55)

Ti<cqr ( ) DRI )<CQ"’(f;%> |

Wc>0

e (). G )

(55)

(58)
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Now we estimate 7». Indeed

P ol () = o )l + I Ceg) = (o) =]

ngnj(x/ Zn |x_x'|7s
i=0 !

=15+ Ty,

with

Zxk<0[lf<xk) —f(x[%m + V(X[g]H) —f(x[g])\]lx - XkI”

T4< W(X/ Zn |X—X'|7‘Y
i=0 4

=Ts5+ Tg.

Working as above

nlx = X |

Q°(f;1/n),, (X + Xpuy41)/2)

|x — x|

T:< C —
} W(x)z"‘k<ow((x[n/z]+1 +x)/2) ool = x|

1 n
@ L _n _ —s+1 S
s <f ’n>w<o<x>zm<°"‘ X

< CQ“’(f;1> :

n

On the other hand by (45), (48), (49) and (55)

w(x) D, <o Xn2) [ (K1) = f Gepuy) | Ix = 2] ™

6x —
W(Xpu/2)) Dimolx —xi|
w(x) . s _
< inf ||w[f —a 11 x = xi| ot (x)n”?
S =l 1, 3 e )
. on ofs .on —s+1
< _ __ _Z
< C inf hwlf a]”[—nlﬂ,nlﬂ]( 2) (] 2“)
< Cinf [[w[f —dll| 11,
eR [ n/f«,n/z]

29
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if s>af + 1. Finally we estimate 75. Working as above

w( (i + Xy2) /2) | (3) = f (Xpay2)|
W+ X)) /2) =l

Zxk<0
Ts< Cw(x)

2 —S
Do lx—xi|”
=0
n’xk B x[n/z]‘
omey (f %l> s 20 = 5l (X))
w (X2 n), T
i=0
1 n\ B n
of ¢.1 . omA#n e
=8 (f’ n>w(] 2) Q’(x[n/Z}) ZXk<0|x x| |x — x;]
1 . m p(x) . n —s5+2
of £.2 m# p(x) .on
= <f’ ”> (] 2) (x[n/z])(] 2" 1)
1 wptp-1 n —5+2
of ¢.1 .n n
< CQ (f,n>w(1 DT (-5+1)
= <f | %> ’ (62)
w

if s=af + f+ 1. Finally from (56)—(62), if s=aff + f + 1,
W00 = S0 < Cor (fi)

So (9) follows. Now we prove (10). By Lemma 8, (42) and (9)
ot (1) 4 o (1)

< Clvlf = Sy + oS, 1l -+
1

< cor(rid) w2l
nj, n

I f\l

i.e., (10) holds true.

Now we prove (11). From (9) it follows that if w?(f;1/n),, = O(z°), then
[Iwlf — Sn(f)]|| = O(n=?). To prove the converse implication, we observe that by
Lemmas 5-7 if |jwogd||< o0,

k() A<ty = S+l iwosits - o+ Jwosioll + 171

< wlf = Skl + C;HW[/’* glll +;{HW<P!/H + [l =gl + [wrf 11}
k 1 C
<l = S+ ke (7)) +l

w
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Hence if ||w][f' — S,(f)]]| = O(k~7), then by [11, Lemma 9.3.4, p. 122]
K¢(13%> il _c

n no

31

Consequently by Lemma 8 it follows that w?(f;1/n),, = O(n"7), i.e., (11) holds true.
Finally working as in [11, Corollary 7.3, p. 86] by Lemma 7 and (9) we deduce (12).

Proof of Proposition 3. Letting f(x) = |x|"™%, with 1/8<y <1, we show that (13) will

give us a contradiction. Indeed from (13) we get
y—a C
P = pu()][ < VxS

with p, an algebraic polynomial (even) of degree at most n. Hence
C 1

1 yo
I = el <

— < |x|< 1.
n’on(1+1/n2)"? o

Now making in (63) the change of variable
X2+ 1/n? 12
=|——" —1,1

we get, for |x|<1 and 0<d<]1,

2 12\ /2 C
n—““—b(M) —qu(x)| <, VIxI<1, 0<o<l,

1+1/n?

with ¢, a suitable (even degree) algebraic polynomial. Setting

2 o\ (1—)/2
(X +1/n
f = ()

we deduce from (64) that f,(x)eLipd in [—1/2,1/2]. Hence in particular

o) =) <

which implies
1 d C
_fn’<_> gﬁ, l<d<?2.

n n

But a direct computation shows that

1 ! d l—zx+l—(5 1 %711 —0—y+1
;ﬁ<z)"71 ) AT

which contradicts (65) for y<1. And the assertion follows.

(64)

Proof of Theorem 4. Because of the interpolatory behaviour of operator S,
we assume x# yi, k=0, ..., n. Let x>0 (the case x<O0 is similar). We distinguish
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four cases.
Case 1: 0<x<yy.
Then, Letting

D kr0alX = Vil I i) = f (o)l
Z?:o|x —yi\_s ’

2 = w(x)

Zkllf( k) =/ (o)

w()f(x) = Salf; X) < W) (x) —f (o) + w(x) ¥ — yk‘l
Z x =il ™

w(x)

<O ()] + - )

w(y
w(x)
w (yo)

[/ ) o) +w)lf () = (o) +Z

< c{ef(x) + e (yo) + z} (66)

Now we prove that

)
w(»o)

with g, = Cn™?,0<5<1. Indeed

{Z > }|x w0 SO0l gy (67)
|

el >y el <t Yol =il

< C{ e (1) +m€./(1)}7

w(m,)

Now

|x — e Y )|
Zo<w(x)[f (vo)| + w(x) ~r
? . |y,(|z<:#n Z:’:o|x — yil
w(x) w(x)

<5007 )

r (1)

On the other hand

> SMQ,(W) + w(x)

w(yo) w(t,)
Hence by (66) and (67) if |x| <xo

er(1).

w(X)If(x) = Su(fs x)|< Cle (x) +

Case 2: x>y and y;>0.
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Let y; denote the closest knot to x. Since |x — y;| < C@ (see e.g. [8]), then

W)~ 0] =i w (S5 ) il (52 i)~ 0

o(x
< CQ(f; |xyj|)w<CQ<f;T)) .

Similarly

n

W)l (x) =/ ()| < €Q ( 7. M) |
Moreover working as usually (see e.g. [8])

|x — eV (x) =S i) ()
W(X)k;,/'—l il —yil™ <CQ<f’ n )w'
Ye>0

Case 3: ‘ykz—+x|<yo, X>yo, yi<0.

Then
w(x) w(x)
w(X)|f(x) = fF )| <er(x) + (i) <er(x) + ¢r(2y0 + x). 68
()~ O0I<x) + 1S <)+ g n +x). (68)
Moreover
|x_yk|_S ‘x_y/\’|_s s —s
Z U Z = S IX =yl Z X — yil
\X+2yk\<yo Zi:()'x B yi' —2y0—x<yr<0 Zi:0|x N yi' —2po—x<pr<0
< C(P(f) T = < (SX)ES
no = n x
< C
= ns—1xs/B
Hence
w(x) |x — | . C C St C (69)
w(vo) Yol =il i I ST

x4y
<

if s>of and s>1+ /;%1 Therefore by (68) and (69)

o 3 v<x>—f<yk>|x—yk|“‘Sc{q.(x)gf(zywx)}_

n _ —8 l
penen  2oke=olX =l L

Case 4. ‘xz;ykgyo and y; <0, x> yy.
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Then working as above

w(x) > WEFI () =S Ol — yel

w(yo) Vi <—2y0—X Z?:0|x o yi|*“'
S
<CW(x) Q . ,(p('x>> n @ (‘X) Z |x_yk|7s+l
M}(yo) n w([)(x) g Yk <—2yo—Xx

n _ _g
LA ) I S D 7Y

w n<=29-x

n (p(x) x“_(s_l)/ﬁ
<co ) —
xs—l (f n )w ns—Z—fx

st 24,61/ < 0Q) <f; QD(X)> a-SU=1/B)+2-1/8
n

w

-]

if s>of+1and s>1+ % Finally from Cases 1-4 the assertion follows.
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